Physics 226: Particle Physics Phenomenology Lecture 1: Introduction

Fall 2016 August 25, 2015

Physics 226: Particle Physics Phenomenology

- Primary theme of this class:
 - Interplay between theory and experiment
 - Suprising experimental results lead to theoretical breakthroughs
 - Brilliant theoretical ideas both guide experiment and allow us to interpret measurements
- Understanding of particle physics expressed in the Lagrangian of the "Standard Model":
 - A misleading name!
 - SM is a real theory with well-developed phenomenology
 - Testable predictions
 - Describes all experimental results (except perhaps neutrino mass)

Term "Standard Model" is an indication of our greed

- Reminds us that there are many unanswered questions
 - ► Does particle physics provide a solution for Dark Matter?
 - ▶ Why is gravity so much weaker than the other forces?
 - ▶ Why is there so little anti-matter in the Universe?
 - Are there extra space-time dimensions?
 - Why are there 3 generations of quarks and leptons?
- Answers to any of these questions would revolutionize our view of the world!
 - Mainstream particle physics experiments today are searching for phenomena that address all these issues

The Standard Model Particles

Particle physics framework based on development of quantum gauge theories

- You will study quantum gauge theories in detail in Physics 232
- Simplest such theory: Quantum Electrodynamics (QED)
 - ► Developed in the 1950's
 - ► Tested to 7 significant digit precision
 - Exhibits a number of remarkable properties that are typical of all gauge theories
 - Need for renormalization: process of subtracting unobservable infinities and retaining small, finite observable corrections
 - Identification of spin 1 field as force carrier
 - Strength of interaction depends on a universal coupling constant (α)

Introduction to QED (I)

- Describes behaviour of spin $\frac{1}{2}$ fermions and a 4-vector potential (E&M)
- ullet As in classical E&M, ${\cal L}$ has a manifest global symmetry
 - ► Freedom to redefine vector potential by a gauge tranformation, which does not change the equations of motion
- New in QED:
 - ▶ Postulate \mathcal{L} is invariant under local gauge tranformations
 - This forces addition of an interaction term
 - Fermions interact with field; strength of interaction proportional to particle's charge
 - Local gauge invariance determines the nature of the fermion-field interaction, forces the photon to be massless and insures conservation of electric charge

Introduction to QED (II)

Classically:

$$A^{\mu} = (V, \vec{A})$$

$$A^{\mu} \to A^{\mu} - \partial^{\mu} \Lambda(x)$$

Quantum Theory:

$$\psi(x) \to e^{i\theta} \psi(x)$$

Dirac Eq:

$$\mathcal{L}_{free} = \overline{\psi} \left(i \gamma^{\mu} \partial_{\mu} - m \right) \psi$$

Postulate local rather than global gauge invariance:

$$\psi(x) \to e^{i\theta(x)}\psi(x)$$

Eq. of motion not invariant unless we make the following changes

$$\partial_{\mu} \rightarrow \mathcal{D}_{\mu} \equiv \partial_{\mu} + iqA_{\mu}(x)
A_{\mu}(x) \rightarrow A_{\mu}(x) - \partial_{\mu}\theta(x)
\psi(x) \rightarrow e^{i\theta(x)}\psi(x)$$

The QED Lagrangian

$$\mathcal{L}_{QED} = \overline{\psi} (i\gamma^{\mu} \mathcal{D}_{\mu} - m) \psi - \frac{1}{4} F_{\mu\nu} F^{\mu\nu}$$

$$= \overline{\psi} (i\gamma^{\mu} \partial_{\mu} - q\gamma^{\mu} A_{\mu} - m) \psi - \frac{1}{4} F_{\mu\nu} F^{\mu\nu}$$

$$= \mathcal{L}_{Dirac} - J^{\mu} A_{\mu} - \frac{1}{4} F_{\mu\nu} F^{\mu\nu}$$

where $J^{\mu} = q \gamma^{\mu}$

- Local gauge invariance defines interaction term
 - ▶ Interaction of charged current J^{μ} with photon
 - Photon must be massless: mass term $\frac{1}{2}M_A^2A^\mu A_\mu$ would destroy gauge invariance

QED is a simple field theory for many reasons

- Dirac Eq plus knowledge of classical E&M makes choice of Lagrangian "obvious"
- QED vector potential is pretty simple:

$$[A_{\mu}, A_{\nu}] = 0$$

no photon self-interactions (photon has no charge)

- There is only 1 kind of photon
- There are no hidden symmetries or other wrinkles

How is the SM Different?

Strong Interactions (I)

- Looks like QED, except gauge field more complicated
- Instead of scalar electric charges, fermion fields (ψ) have color charge describes as a triplet of $SU(3)_{color}$
- Gluons are a color octet of SU(3) (8 gluon states)
 - $[A_i, A_j] \neq 0$ for $i \neq j$ "non-abelian"
 - lacktriangleright Equivalent of $F_{\mu\nu}$ contains an additional term that depends on this commutator
 - Gluons interact with each other as well as with quarks

 Strong coupling constant α_s plays same role in theory as α does in QED

Strong Interactions (II)

- In all gauge theories, coupling strength depends on momentum transfer in interaction (Q)
- Essentially a polarization effect
 - Virtual particle-antiparticle pairs produced in vacuum
 - ► These shield "bare charge" of interacting particle
 - In QED, coupling increases with energy
 - In QCD, due to gluon self-coupling, coupling varies more rapidly and decreases withe energy

Behaviour of α_s

- ► Low *Q*: non-perturbative
- ► High *Q*: perturbation theory OK
 - $\alpha_s \gg \alpha$: slower PT convergence

Weak Interactions (I)

- Like Strong Interactions, gauge group is non-abelian
 - ▶ But wrinkles different from the Strong Interaction case
- Attempt to unify electromagnetic and weak interactions, but in fact there are two coupling constants

- ▶ However, g and g' are not EM and weak couplings
 - Mixing among components
 - EM basis is a combination of neutral components of SU(2)_L and U(1)

Weak Interactions: The Force Carriers

- Three vector bosons': W^+ , W^- , Z^0
- W^\pm responsible for eta-decay: changes quark and lepton flavor
- \bullet Z also couples to quarks and leptons (similar to photon)
- Triple and Quartic couplings of gauge bosons to each other

Weak Interactions: The bosons have mass

- Weak interactions <u>not</u> mediated by a massless field
 - ► Short range force
- "Weakness" comes from mass of force mediator

$$G_F \sim 10^{-5} \text{ GeV}^{-2} \Rightarrow g_W/M_W^2$$

- But how to incorporate massive boson into gauge theory?
 - Gauge invariance does not allow addition of a mass term directly into the LaGrangian
 - ► The solution: Electroweak Symmetry Breaking and the Higgs mechanism
 - Introduce a scalar field and a symmetry
 - Change physical basis
 - ▶ M_W and M_Z predicted in terms of e and 1 additional parameter ($\sin^2 \theta_W$)

The Standard Model Lagrangian

$$\mathcal{L} = -\frac{1}{4}F^a_{\mu\nu}F^{a\mu\nu} + i\,\bar{\psi}D\psi \qquad \text{gauge sector} \\ + \psi_i\lambda_{ij}\psi_jh + \text{h.c.} \qquad \text{flavour sector} \\ + |D_\mu h|^2 - V(h) \qquad \qquad \text{Higgs sector} \\ + \frac{1}{M}L_i\lambda^\nu_{ij}L_jh^2 \text{ or } L_i\lambda^\nu_{ij}N_j \qquad \qquad \text{v mass sector}$$

- $\mathcal{L} = \mathcal{L}_{QCD} + \mathcal{L}_{EW}$
- \bullet Gauge group: $\mathrm{SU}(3) \times \mathrm{SU}(2)_L \times \mathrm{U}(1)$

Beyond the SM

- In SM, all forces described by local gauge theories
 - ► What about gravity?
 - Spin-2 gravaton not easily added
 - String theory a natural extension
 - Gauge theory as a low energy manifestation
- All forces defined in terms of symmetry properties
 - ► Can embed gauge group in larger group that "unifies" them
 - One coupling constant rather than 3
 - Grand Unified Theory (GUT)
 - Expected scale for unification $\sim 10^{15}~{\rm GeV}$
 - Extra space-time dimensions can bring scale down
 - Can also add additional symmetries
 - Eg Supersymmetry (SUSY)

The Role of Experiment

- In QED:
 - ► Observation: EM has global gauge invariance
 - ► Theory: Postulate of local invariance leds to predictions
 - Experimental measurements validated approach
 - \bullet g-2, Lamb shift
- In SM:
 - ► Matter content determined from experiment
 - Underlying symmetries determined from experiment
 - ► These define Lagrangian
 - ► Theoretical predictions possible once Lagrangian is known
 - ► Experimental measurements validate or refute the theory
- BSM:
 - ► Theorists postulate new forces and interactions
 - ► Experimentalists look: find or rule out

Just because a theory is beautiful, doesn't mean it is correct!

- Example: SU(5) GUT
 - ▶ Developed by Georgi and Glashow in 1974
 - ► Simplest possible GUT
 - $SU(5) \supset SU(3) \times SU(2) \times U(1)$
 - One fundamental coupling constant
 - Quarks and leptons in same multiplets
 - ► Beautiful theory that should have been right! But:
 - \bullet Predicts proton decay with lifetime $10^{30\pm2}$ years
 - Searches for proton decay (large water Cherenkov detectors) set lifetime limits outside predictions of minimual SU(5)
 - More complicted GUT theories still allowed

Particle physics experiment: The 3 frontiers

Energy Frontier

 Use high energy colliders to discover new particles and new interactions and directly probe the fundamental forces

Intensity Frontier

 Use intense particle beams or large mass detectors to uncover the properties of neutrinos and to observe rare processes that involve other elementary particles

Cosmic Frontier

 Use underground experiments and telescopes to study Dark Matter and Dark Energy. Use high energy particles from space to search for new phenomena

High Energy: Probing small distance structure

- Spatial resolution limited by wavelength of probe
 - Microscope: visible light $\lambda \sim 1 \mu \text{m} \rightarrow \text{cell structure}$
 - ▶ Higher energy particles: $\lambda = 2\pi\hbar/p$
 - $\hbar c \sim 200~{\rm MeV~fm}$
 - ightharpoonup X rays: $\lambda \sim 0.01\text{-}10 \text{ nm} \rightarrow \text{atomic crystal structure}$
- Charged particles:
 - ▶ Rutherford experiment: $p \sim 10 \text{ keV } \lambda \sim 10^{-10} \text{ m}$
 - ▶ Discovery of quarks: $p \sim 10$ GeV, $\lambda \sim 10^{-16}$ m
 - ▶ LHC: $p=\sim$ 1-10 TeV, $\lambda\sim 10^{-18}$ 10^{-19} m
 - Can search for substructure (eg for quarks)

High Energy: Production of massive particles

- Energy mass equivalence: $E = mc^2$
- Mechanism for creating new massive particles: particle-antiparticle annihilation

- e^+e^- collider
 - Electrons have no internal structure
 - All energy used to make new particles
 - But electrons have small mass: radiate when accelerated

- Hadron collider
 - lacktriangleq Protons made of q and g
 - Hard collision uses only fraction of energy
 - Protons heavy: less radiation when accelerated

High Intensity: Direct probes of large mass

- Virtual corrections have measureable effects
 - ► Ability to calculate size of these effects well established
 - g-2, precision measurements of Z-boson properties
- Size of correction depends on mass of exchanged particle
- If exchanged particle allows interactions forbidden by other processes, search for it through its virtual effects

Lepton flavor violation: $\mu+N \rightarrow e+N^*$

Proton decay in a GUT

Large Volume: Probing rare phenomena

- If process rare, need many opportunities to see it
- Examples:
 - Neutrino interactions
 - ► Dark Matter (WIMPs)
- Detector is also the target
- Beams from accelerators or incident particles from outer space

The Cosmic Frontier

- Most of the universe is not made of the particles we study in the lab
- Understanding Dark Matter and Dark Energy central to particle physics, although techniques used are quite different
- Significant synergy between particle physics and cosmology

Dark Matter: Three Complementary Approaches

Tim Tait: DarkMatter LHC 2013

Our program for the semester

- Experimental tools (2 weeks)
 - Detectors and accelerators
 - Statistics and probability
 - Fitting and other mathematical methods
- Particle physics basics (1.5 weeks)
 - Symmetries and conservation laws
 - Cross sections and Feynman diagrams
- Strong interactions (3 weeks)
 - ► Structure of the proton
 - ► The QCD Lagrangian
 - ► Hadronization
 - Quarkonium

- Weak Interactions (3.5 weeks)
 - ► Weak decays
 - ► C, P and CP
 - ► CKM Matrix
 - $ightharpoonup K\overline{K}$ and $B\overline{B}$ Mixing
 - ► Neutral currents
- Hadron colliders (1.5 weeks)
 - ► Jet production
 - Electoweak bosons
 - ► The top quark
 - ► EWSB and the Higgs
- Current topics (2 weeks)
 - SUSY and GUTS
 - Dark Matter
 - Neutrinos